The COMTESSA project: Tomography of artificial SO₂ plumes with multiple SO₂ cameras for improving our understanding of plume dispersion and turbulence

A.S. Dinger1,2, K. Stebel1, M. Cassiani1, A. Kylling1, I. Pisso1, N. Schmидbauer1, H. Ardeshiri1, S.-Y. Park1,3, A. Stohl1

1 Norwegian Institute for Air Research, Kjeller, Norway
2 Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
3 Institute of Environmental Studies, Pusan National University, Busan, Republic of Korea

SO₂ cameras deliver SO₂ column density images based on measurements of backscattered sunlight at different wavelengths. A set of 9 SO₂ cameras was developed to meet the requirements of COMTESSA in respect of spatial and temporal resolution.

Camera Observations and Modelling of 4D Tracer Dispersion in the Atmosphere
Andreas Stohl (ast@nilu.no)
1/11/2015 – 31/10/2020
Experiments: every year in spring & summer
Military facilities in Norway
High-resolution 4D tracer concentration field

Goals
- **SO₂ Camera technique**
 - Validation of SO₂ retrieval
 - Comparison of UV and IR imaging
- **Tomography**
 - 3D reconstruction of SO₂ plume
 - 3D optical flow analysis
- **Turbulent dispersion**
 - Richardson-Obukhov constant
 - Parameterizations for Lagrangian models

Atmospheric boundary layer
- Test of Richardson-Obukhov law
- Relative dispersion and meandering of plume and puffs
- Statistics of velocity vector field and scalar concentration field
- Two-point concentration structure function

Further Reading
Radiative Transfer: Emde et al. 2016 Geosci. Model Dev., 9, 1647–1672, 30

Acknowledgment
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 670462.

Modelling
Large Eddy Simulations
LES are used to examine the characteristics of the scalar field dispersing from a localized small source under a wide range of atmospheric boundary layer conditions

Radiative Transfer Simulations
Wavelength-selective intensity images as seen by the SO₂ cameras of the above concentration field are simulated using libRadtran and MYSTIC.

Tomographic 3D reconstruction
Poster X5.492 Thu 17:30-19:00: Tomographic iterative reconstruction of a passive scalar in a 3D turbulent flow

Experiment
Controlled release of trace gas SO₂ from tower
- Observation of SO₂ column densities from multiple viewing directions using SO₂ cameras (both UV and IR)
- Observation of atmospheric conditions on towers and tethered balloon
- Boundary layer structure (PTU sonde)
- High-speed cameras (both UV and IR)

SO₂ Cameras
- SO₂ cameras deliver SO₂ column density images based on measurements of backscattered sunlight at different wavelengths.
- A set of 9 SO₂ cameras was developed to meet the requirements of COMTESSA in respect of spatial and temporal resolution.

Dimensions
<table>
<thead>
<tr>
<th>Camera Model</th>
<th>6 x UV</th>
<th>3 x IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera Model</td>
<td>PCO ultraviolet (dual camera)</td>
<td>Xenics Gobi-384 (triple camera)</td>
</tr>
<tr>
<td>Wavelength Bands</td>
<td>310 & 330 nm</td>
<td>8.6, 10 & 11 µm</td>
</tr>
<tr>
<td>Max. frame rate [Hz]</td>
<td>7.3</td>
<td>84</td>
</tr>
<tr>
<td>FOV [°]</td>
<td>14.7 x 11.1</td>
<td>13.7 x 10.3</td>
</tr>
<tr>
<td>Resolution [pixel]</td>
<td>1392 x 1040</td>
<td>384 x 288</td>
</tr>
<tr>
<td>Focal Length [mm]</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>8.3 x 11.6</td>
<td>7.5 x 11.7</td>
</tr>
<tr>
<td>Dimensions [cm]</td>
<td>21.5 x 23.5 x 29</td>
<td>21.5 x 23 x 26</td>
</tr>
</tbody>
</table>

Further Information
Don’t hesitate contacting us asd@nilu.no